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EKSZO, t.automycin, Ignkamycin, concanamyc.in, geldanamygin, HQ 9 ke %o - j_(o v o
zwittermycin, maytansinoids, and oxazolomycin are polyketide Pp} ¢0H — % ;f{p P —-HOJ—(s
natural products that have one or more glycolytic derived units in e ciycolytc pool fﬁ“(o. Ho o

their backboné? The biosynthetic gene clusters for FK520,
tautomycin, oxazolomycin, concanamycin, geldanamycin, and the
maytansinoid ansamitosin P-3 have been identifiedch of these
clusters contains a gene whose deduced product (a 40 kDa protein)
belongs to the haloacid dehalogenase (HAD) superfamily (Figure

S1) and is the most likely candidate for diverting a portion of the
glycolytic pool into secondary metabolite polyketide biosynthEsis.

In this paper, we show that OzmB, a member of the HAD family

of proteins from the oxazolomycin biosynthetic pathway, is indeed g
dlvertlng a portlo_n of the glycolytic Intermgdlate into the b"?Sy”'_ Figure 1. The diversion ob-1,3-bisphosphoglycerate into the biosynthesis
thesis of polyketides, such as oxazolomycin and tautomycin. It is of polyketides, such as oxazolomycin and tautomycin.

demonstrated that OzmB first sequestets 3-bisphosphoglycerate
from the glycolytic pool to form the@-3-phosphoglyceryl-S-OzmB
intermediate, then removes the phosphate group to afford-8e

quycefryl-StkarrllB spleues (atlctlng asla phospha;[a_se)Agr';d tﬂna”tyglyceryl-S-Osz was first subjected to tandem mass spectrometry
ransfers the glyceryl group to an acyl carrier protein ( ) to se using either collisionally activated dissociation (CAD) or infrared

]Ehe stageF_for pollykeltzidehbiofsyt/rr:thefis (acti?g} asda Slycoeryl érans- multiphoton dissociation (IRMPD). This resulted itb and 13
erase) (Figure 1). Each of the steps catalyzed by OzmB was unique fragment ions (Figure 2E5.This localized the glyceryl

monitored using nanospray Fourier transform ion cyclotron reso- it St o1 45 amino acid stretch,Sto Dssy. They220 and

nalnce mass speft[)orpetry (:Lng-I;;,ICF;MS)H | t y227 fragment ions, with mass values of 24802.2 and 25517.1 Da
N primary metabolismp-1,5-biSpnosphoglycerate Serves as a containing glycerate, were very abundant. Both of these ions are

metabolic branch point as a precursor to §erine, glyceryl lipids, N-terminal to proline. Amides on the N-terminal side of proline
!actate, and glut_:o”se 6-p_r|1 otsjlphe_lte. Slnce3-b|sp2c_)sphoglyc_erate are known to be preferentially fragmented during thermal activation
Is not commercially available, it was generated in S.'tu um_rfg . and therefore often present themselves as the most abundant ions
phosphoglyc_grate, ATP’ amﬂS-phosphog_cherate kl_nase n this during CAD and IRMPL® In an effort to further localize the
study and utilized without further purification. Thus, incubation of position of glycerate on OzmB, these two abundant fragment ions

Olsz witE_D-S-phosproglycer:ateag\_'rP, M}?’ andD-Sljphosp:]o-d_ were generated using CAD then isolated and subjected to IRMPD
glycerate kinase resulted in the addition of 88.8 Da due to loading in the cell of the ICRMS instrument. This resulted inyzhd 1

of OZfT‘B with glycera.te (Figure 2B) and is, \(vithin experimental fragment ions, further localizing the attachment site for glycerate
error, in agreement with the expected mass increase for glycerate, o 59 amino acids & to Esss (Figure 2E). Finally, glyceryl-
(+8$'02 Da)_. Rem‘_’v'”g ATP (Flgu_re 2A) or3-phosphoglyc¢rate S-OzmB was subjected to trypsin digestion and HPLC separation.
abolished this activity, while removing3-phosphoglycerate kinase The fraction eluting at 1920 min contained the glyceryl-tethered
resulted in loading of a trace amount of glycerate due to background .. ¢ iha active site corresponding ta:Gto Rers (M, = 6472.64
klnasg activity (Flg_ure S2), serving as negative con_trols. This means Da). Subjecting this ion to IRMPD resulted ind.&nd 14 fragment
that, n Or‘?er to d|verb-;,s_’-blsphosphogcherate into polyketide 4 ang ocalized the glycerate to the four residues/V 7o,
biosynthetic nghways, it is activated via covalent attachment to as all they-fragments to the left (toward the N-terminal end) of
OzmB. In addition to the covalent tethering mf3-phosphoglyc- the CRVV sequence correspond to a mass of the peptRR:02
— — Da, while they-fragment ions to the right (C-terminal end) of this
 University of llinois. sequence match the unmodified form of the peptide. Since Ste

* Division of Pharmaceutical Sciences, University of Wisconsifadison. . . o . . i
$ University of Wisconsin National Cooperative Drug Discovery Group, group of cysteine is the only nucleophile in this four amino acid

erate, OzmB must also catalyze dephosphorylation at the 3-position
to generate the glyceryl-S-OzmB species.
To map the attachment site of OzmB, thet5tharge state of

University of Wisconsir-Madison. ; ;
7 Department of Chemistry, University of WisconsiMadison. stre.tch, glycerate was asglgned to be .covalently attached to the side
#Shanghai Jiaotong University. chain of the cysteine residue as a thioester.
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Figure 2. Loading and localization of glycerate on OzmB and its transfer to holo-TtmD ACP: (A) OzmB incubated-8ithosphoglyceratey-3-
phosphoglycerate kinase; (B) same as (A) plus ATP; (C) holo-TtmD; (D) holo-TtmD incubated with glyceryl-S-OzmB; and (E) localization of the covalen
gttachmt'a?gt site of glyceryl on OzmB=+178 Da covalent addition due to gluconylation of the N-terminakithg of OzmB or TtmD during overproduction

in E. coli.

To show that glyceryl-S-OzmB could transfer glyceryl to the Chinese Ministry of Science & Technology grant 2003CB114205
—SH group of the 4phosphopantetheine moiety of ACP, it was (Z.D.), and NIH Grants CA113297 (B.S.), GM067725 (N.L.K.),
co-incubated with the TtmD ACP from the tautomycin biosynthetic and NIH Independent Scientist Award AI51689 (B.S.). We thank
gene cluster (Figure S3)To generate the holo-form of TtmD, it  Dr. Werner F. Fleck, Hans Knoell Institute for Natural Product
was incubated with CoA and the phosphopantetheinyl transferaseResearch, Jena, Germany, for the oxazolomycin produsirep-

Sfp8 Incubation of holo-TtmD with glyceryl-S-OzmB, generated tomyces albusA3454, and Dr. Hiroyuki Osada, RIKEN, Wako,
using OzmB, ATP p-3-phosphoglycerate, armt3-phosphoglyc- Japan, for the tautomycin producii® spiraerticillatus.

erate kinase in situ, resulted in the addition of 88.0 Da onto holo-

TtmD, consistent with the formation of the glyceryl-S-TtmD Supporting Information Available:  Experimental details and
species. This addition was not observed when holo-OzmB, ATP, supporting figures. This material is available free of charge via the

or p-3-phosphoglycerate was omitted (Figure 2C), but loading of 'MtemMet at http://pubs.acs.org.
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